
J .  Fluid Mech. (1989), vol. 205, p p .  13&161 
Printed in Great Britain 

135 

Improved linear representation of 
ocean surface waves 

By DENNIS  B. CREAMER, FRANK HENYEY, ROY SCHULT 
AND JON WRIGHT 

Center for Studies of Nonlinear Dynamics, La Jolla Institute, 7855 Fay Avenue, Suite 320, 
La Jolla, CA 92037, USA 

(Received 16 February 1988 and in revised form 30 January 1989) 

We apply the idea of choosing new variables that are nonlinear functions of the old 
in order to  simplify calculations of irrotational, surface gravity waves. The usual 
variables consist of the surface elevation and the surface potential, and the 
transformation to the new variables is a canonical (in Hamilton’s sense) one so as to 
maintain the Hamiltonian structure of the theory. We further consider the 
approximation of linear dynamics in these new variables. This approximation scheme 
exactly reproduces the effects of the lowest-order nonlinearities in the usual 
variables, does well a t  higher orders, and also captures important features of short 
waves interacting with longer waves. We provide a physical interpretation of this 
transformation which is correct in the one-dimensional case, and approximately so 
in the two-dimensional case. 

1. Introduction 
The appropriate characterization of the sea surface, while a difficult task, is 

necessary for a myriad of applications. The dynamical behaviour of the sea surface 
will never be described exactly, thus requiring some sort of approximation. I n  this 
paper we present a useful approximation scheme that exactly captures the lowest- 
order nonlinear behaviour of surface waves, does well at higher orders, and also 
captures the important features of short waves interacting with longer waves. We 
consider only irrotational motion and ignore the effects of the wind and of surface 
tension. 

The general idea is to replace the usual functions describing the surface, namely 
the surface potential and the surface elevation, with two new functions and use linear 
dynamics in the new functions. We require that the solution of the linearized time- 
evolution equations in the new variables more nearly describes the true solution than 
does the corresponding linearized solution in terms of surface elevation and velocity 
potential. In  order to  determine the new functions we combine a transformation of 
variables with a perturbation expansion in the wave slope (by variables we mean the 
functions referred to above). We show that the leading nonlinear terms in the 
equations of motion (which are of quadratic order) can be entirely removed by this 
transformation of variables, and hence in the new variables the dynamics is linear 
plus terms of cubic order in the wave slope. Thus, dynamical effects which are of 
quadratic order in the wave slope are then contained in this kinematic transformation 
of variables. If we are concerned with properties of the ocean surface for which it is 
a good approximation to ignore cubic and higher order nonlinearities, the proposed 
transformation of variables becomes very useful since i t  is not then necessary to solve 
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partial differential equations for the time evolution of the surface waves. The 
dynamics of the new variables is given by a linear equation which is identical to the 
usual linear equations. In  addition, one form of the transformation contains a very 
good approximation to the important dynamics of short waves interacting with long 
waves and hence is far superior to a perturbation expansion in the slope. 

There is, or course, some cost - the nonlinear transformation of variables must be 
inverted. The complexity of this nonlinear transformation must be compared to the 
complexity of solving the dynamical equations. For most applications, one is only 
interested in the sea surface a t  discrete times. If the time spacing is not too small, it 
is more efficient to solve the nonlinear transformation a t  each time step. For many 
applications one is not even interested in time evolution as such, but only in its 
consequences for statistical properties of waves. 

We have not considered the problem of higher-order perturbation theory. For 
calculations for which effects in higher-order perturbation theory are important, 
there may be no particular benefit to  our change of variables. However, since some 
of the short-wave long-wave interaction is captured correctly the new variables could 
be better for higher-order calculations. 

In this paper we do not develop any possible applications of the transformation of 
variables. However, a t  this point we shall briefly mention four uses for which the 
formalism could be useful. There are undoubtedly others. 

(i) Solution of the inverse problem for ocean waves. Suppose one wishes to 
determine the surface wave field of the ocean from a number of measurements a t  
discrete times. One possibility is to integrate the partial differential equations for the 
time evolution directly. An alternative is t o  solve the linear time evolution equations 
for the new variables and then solve the transformation equations a t  the discrete 
times. The length of time between the measurements will determine which method 
is better by comparing the computational requirements for integrating the evolution 
equations for one time interval versus the requirements for solving the trans- 
formation equations. 

(ii) Short waves riding on long waves. We have discovered that one of the possible 
transformation of variables leads to a simple, analytic representation of short waves 
on long waves. It does almost as well as integrating the eikonal equations directly 
and is much simpler. 

(iii) Statistics of surface gravity waves. Ocean surface waves are a weakly 
nonlinear system and the statistics of such waves show nearly Gaussian behaviour. 
In  the limit that the nonlinearity goes to zero the statistics would be Gaussian. Since 
the new variables are more nearly linear (the leading nonlinear behaviour is absent), 
we expect their statistics to be more nearly Gaussian than the usual variables. The 
leading deviation from Gaussianity of the usual physical variables should be 
contained in the transformation. 

(iv) Assess nonlinear wave codes. Wave modelling (Hasselmann 1984) usually 
includes only the effect of the four-wave resonant interactions to  study wave growth. 
Since our transformation does not affect the lowest-order resonant interactions and 
removes the effect of three-wave interactions, we view these modelling efforts as 
describing the dynamics of the transformed variables. Application of wave-modelling 
results to the real ocean requires the transformation back to the usual physical 
variables, which, we shall show, does not significantly change the spectrum. Use of 
the form of the four-wave term in the new variables might give superior results. 

We use a Hamiltonian description of surface waves. Within the framework of 
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Hamiltonian mechanics there has evolved a theory of canonical transformations. A 
description can be found in many text books, such as Goldstein (1980). If the 
Hamiltonian can be expanded in a perturbation theory in powers of a parameter, and 
if the leading nonlinearity contains no resonant interactions, there is a theorem that 
says that there exists a change of variables that will give a new canonical 
Hamiltonian system for which the leading-order nonlinearity is absent. It is well 
known that for surface gravity waves there are no three-wave resonant interactions, 
and so it seems worthwhile to find such transformations. 

The transformation is not unique, and the question naturallly arises as to which 
is in some sense best, and yet still simple. We explicitly exhibit two transformations 
and show that linear dynamics in one of them captures many important features of 
surface-wave dynamics beyond that given by the lowest-order nonlinearities. 
Linearizing in these new variables leads to exactly the same equations of motion as 
one gets for usual variables; the frequencies are given by the dispersion relation, 
w = (gk) i ,  where g is the gravitational constant and k is the wavenumber. The shape of 
the surface and the value of the velocity a t  any point on the surface will, however, 
be different. 

In  the next section we define notation and describe the Hamiltonian for surface 
gravity waves. Section 3 describes two different canonical transformations from the 
physical variables to the new variables : one using a global generating function 
technique and another using Lie transforms. The reader who is concerned only with 
applications in one dimension can skip to $4 and consider (4.13), relating the physical 
and new variables, as given. Sections 4,5,  and 6 show various one-dimensional results 
(using Lie transforms) which can be summarized as follows : 

(i) There exists a practical way to evaluate the Lie transform in terms of the 
horizontal Lagrangian displacement. 

(ii) The Lie transform provides a good approximation to a Stokes wave of 
moderate wave slope. 

(iii) In the case of a short-wave packet on a long wave, the transformation 
correctly incorporates the modulation of the group velocity of the wave packet by 
the long wave. The position, wavelength, and amplitude of the short wave are 
correctly given (at  least to leading order in the long-wave slope). Because this 
transformation is time independent, this result occurs as a kinematic effect while it 
is usually thought of as a dynamic effect due to the advection of the short waves by 
the long wave. 

(iv) The modification of the surface-height spectrum due to the transformation is 
proportionately small over the whole range of wavenumbers. 

(v) There is the proper balance of radiation stresses so that there is no change in 
the average surface elevation. The Stokes drift and the attendant deep-water return 
current combine properly to ensure this result. 

These results are presented using Lie-transform theory. If we had used some other 
canonical transformation (such as that from the global generating function in $3) the 
results would be different. In the case of the global generating function, the 
approximation to a Stokes wave is still rather good but results 3 and 4 change 
completely. The modulation of the group velocity of a short-wave packet is 
incorrectly given, while the modification to the spectrum would be enormous a t  high 
wavenumbers, with results similar to the perturbative calculations of Barrick & 
Weber (1976). Thus the transformed variables in the Lie-transform scheme seem to 
be special though we have yet to discover why. In  $4 we discuss a physical 
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interpretation for the one-dimensional case. Finally, in § 7 we present some results on 
applying our formalism to two-dimensional waves. The physical interpretation of the 
one-dimensional case is extended to two dimensions and the behaviour of short 
waves on long waves is discussed. In  $8 we summarize our results. 

2. Surface-wave Hamiltonian 
Our starting point is the Hamiltonian for fully nonlinear surface waves. This 

Hamiltonian, or the related variational principle, has been independently redis- 
covered by a number of workers. (For a review, see Miles 1981.) Normally, a 
Legendre transformation carries one from a variational principle to a Hamiltonian. 
In  the case of fluid problems, however, the constructed variational principle is in 
canonical form, and it is trivial to read off the Hamiltonian. By canonical form for 
a Lagrangian (Courant-Hilbert 1937) is meant one depending not only on q, but also 
on p in the following way: 

Thus, from a canonical form Lagrangian i t  is trivial to read off the p ,  q pairs of 
canonical variables and the Hamiltonian H ( p ,  9). 

In  order to express the surface-wave Hamiltonian in a convenient form, as well as 
for algebraic convenience, we introduce some notation. We wish to describe waves in 
terms of the canonical variables defined on the water’s surface (Zakharov 1968), i.e. 
the surface elevation g(x , t )  and the velocity potential $(x,z,t)  evaluated a t  the 

where $(x, z ,  t )  satisfies Laplace’s equation in the interior of the water. We write x for 
(x, y) and 3, for (az, aY). Three-dimensional partial derivatives of, for example, the 
velocity potential occur in the Hamiltonian, and these need to be expressed in terms 
of the velocity potential (or other functions) a t  the surface. Letf(x, t )  be any function 
a t  the surface. An interior function g(x, z, t )  is defined by solving Laplace’s equation 

and 

on the bottom and sides (if any). Here ri denotes the normal to the surface. Thus if 
f is the velocity potential a t  the surface, g is the velocity potential in the interior. The 
operators D, = (D,, DY) and D, are defined by 

Djf = aj 9/,-<. (2 .5)  

Thus, Dj is a linear (but non-local) operator from functions of (qy) to functions of 
(x,y). D, differs from a,, since 
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The Hamiltonian for surface waves is equal in value to the energy and is (West 
1981 ; Henyey et al. 1988) 

where cand 9, are the canonical variables. We have chosen units in which the density 
p = 1 .  The operators D are functionals of 5, thereby introducing nonlinearities into H .  
The complexity of surface-wave calculations is entirely in dealing with the D 
operators. One method of working with the D is to expand in a power series in 5. 
Writing H = H ,  + H 3  + H ,  + . . . we have, for example, 

(2.10) 

where we have introduced the operator 

e ( x )  = [ - (2.1 1 )  

This operator and the higher-order terms of the Hamiltonian are most conveniently 
evaluated in Fourier space, where (2.11) becomes just the magnitude of the wave 
vector, 0 = (kl. Introducing the Fourier transform of the canonical variables 

and 

(2.12a) 

(2.12 b )  

we have 

(2.13) 
We have adopted the notation 5, = ck. and similarly for the 4. 

For surface- waves one can, of course: treat the higher-order terms perturbatively. 
However, one has to be careful about the time development of the wave field in any 
treatment involving a perturbative parameter, denoted by A. Naive perturbation 
theory gives results that have secular growth in the form At, where t is the time, and 
thus are valid only for small time (t  4 l / A )  and cannot be expected to yield the 
proper, long-time behaviour of the wave field. Standard texts on classical mechanics 
suggest developing perturbation theories based on canonical transformations in 
which the time evolution is properly taken into account. There is a plethora of 
techniques for accomplishing this transformation, of which we shall consider two : 
global generating functions and Lie transforms. The common requirement for these 
different methods is that, after the transformation to the new variables, there is no 
third-order piece in the Hamiltonian. The fourth-order pieces of the new Hamiltonian 
will be different for different transformation schemes. However, at this order, the 
resonant interaction will be the same, while the non-resonant interactions will be 
different for the various transformations. I n  fifth and higher orders both resonant 
and non-resonant interactions are different. Actually it is the difference in how much 
of the interactions (in higher orders) is already incorporated into the transformation 
that is responsible for determining which transformation gives the better approxi- 
mation to exact answers. Our empirical result is that Lie transforms enjoy a 
privileged position. 
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3. Lie-transform theory 
As mentioned earlier, we shall concentrate on a particular canonical transform 

known as a Lie transform. In  order to elucidate our discussion we first construct a 
global generating function. We want to perform a transformation on the canonical 
variables that appear in the Hamiltonian (2.9), 6 (surface height) and $s (potential 
on the surface), which preserves the canonical structure and eliminates the cubic 
terms appearing in the Hamiltonian. This transformation takes [+ rand  $s + $s and 
can be accomplished by the use of a global, time-independent generating furktional 
F ,  which depends on one old variable and the other new variable, 

(2X)2a2(k1 + k2 +k3) [D(1,2,3) $1 $2 $3 +B(1,2 ,3)  c z  $31, (3.1) 

where D( 1 ,2 ,3 )  and B( 1,2,3) are functions which will be chosen so as to eliminate the 
cubic terms. Notice that (3.1) does not have the most general cubic form. Other 
possible combinations would add terms to the transformed Hamiltonian which are 
not in the original Hamiltonian and so their coefficients are set to zero. Note, 
however, that (3.1) is the most general cubic form odd in $s; thus the transformed 
H will remain even in $s. The transformed variables can be determined via 

and 

Notice that, since the generating functional is a mixture of the old and new variables, 
(3.2) and (3.3) are a pair of implicit equations for the new variables (in terms of the 
old) or vice versa. Equations (3.2-3.3) are non-trivial to solve. The iterations (3.2) 
and (3.3) can be used to determine y and $s as expansions in Qand which are 
inserted into the expressions for the Hamiltonian (2.10) and (2.13). After some 
tedious algebra the new Hamiltonian can be shown to have no cubic terms in the new 
variables provided that 

where the quantity Oi = lkil is defined in wavenumber space. These new variables can 
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be used to investigate the connection between the physical variables and these 
variables. The denominator in (3.4) and (3.5) is proportional to 

(wl + w2 + O3) + w Z - w 3 )  (wl - @ 2  + w 3 )  ( w l  - w Z - w 3 ) ,  

with the wi being the frequencies. Our necessary condition that the three-wave 
interaction be non-resonant is equivalent to the non-vanishing of this denominator. 
The practical application of global-generating-function techniques tends to be a bit 
clumsy since (3.2) and (3.3) must be expanded to the desired order to obtain the 
functional relations. It is more practical to use a transformation where the 
generating functional is local, i.e. does not involve both old and new variables. This 
is most easily accomplished by using a sequence of infinitesimal transformations. 
This method is commonly known as Lie transforms (for a review see Cary 1981) and 
is most easily expressed in terms of Poisson brackets. The Poisson bracket of two 
quantities A and B is denoted by ( A , R )  where 

Here [(x) and $s(x)  are canonically conjugate variables. 
Lie-transform theories are similar to global canonical transformations ; one seeks, 

by performing the transformation, a simpler Hamiltonian. Instead of considering the 
global generating function (3.1) and the associated canonical transformation, one 
considers a family of canonical transformations #s -f @(z, A )  and [+Z(z, A )  ( A  is the 
parameter describing this family) determined by a local generating function defined 
at A. There exists a functional W[@,Z]  satisfying 

(3.7) 

where A is either @ or 2. If W has appropriate properties then Q, and Z are specified 
as the unique solutions of (3.7) subject to the appropriate boundary conditions, 
which we take to be 

@s(x, A = 0) = $s(4, ( 3 . 8 ~ )  

and Z(z, A = 0) = &). (3.8b) 

The transformed fields or new canonical variables will be taken to be solutions at 
A = l :  

(3.9a) 

and ax) = Z(z,A = 1) .  (3.9b) 

The differential equation in (3.7) can be turned into the integral equations 

&(z) = @ ( % , A  = l ) ,  

( 3 . 1 0 ~ )  

(3.10b) 

These equations can be iterated to find the new variables as functions of the old 
variables. To the first non-trivial order, the relations between &, r a n d  #s, [ deduced 
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from (3.10) are the same as those from (3.2)-(3.3) if W, is chosen to be the negative 
of the three-wave piece of the global generating functional, (3.1), 

X [ D ( 1 , 2 , 3 ) @ ~ , ~ 2 @ 3 + B ( 1 , 2 , 3 ) 2 1 Z z ~ , I ,  (3.11) 

using notation and definitions of the transforms of Z(z,A) and @(s,h) similar to 
(2.12). We then have (3.7) explicitly as 

The equivalence (to third order) of the two different transformations is enough to 
ensure the absence of three-wave interactions in the Lie-transformed Hamiltonian. 
To formally see this, recall that  the new Hamiltonian K ,  determines the time 
evolution of the transformed fields via 

A = {A,K) ,  (3.13) 

where A = (@,Z) and the overdot refers to the time derivative along a trajectory. 
Using the old Hamiltonian, H ,  we have 

Since the A are functionals of 5 and q5s, and W has no explicit dependence on the time, 
the first term on the right-hand side is zero. This gives 

K(@, 2) = mq5,> 0, (3.15) 

where @, 2 are functionals of q5s, 5 (and vice versa) to be determined from solving 
(3.12a, b) .  The physical variables (5, q&) are given in terms of the new variables by 
solving the equations with the boundary conditions specified at h = 1 ; Z(h  = 1) = 
&and @(A = 1) = $s. In order to see the cancellation of the third-order terms in K 
write (3.12a, b)  as the equivalent integral equations (with boundary conditions 

Z(X, 4 = &(4 - 5, dA’{Z(z, A’), W,J, ( 3 . 1 6 ~ )  

@(x, A )  = $,(x) - dh’{@(x, A’), Wx). (3.16b) 

Iterating these equations and using (3.8) the new Hamiltonian (to third order) is then 

specified at A = 1) 1 

s: and 
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The last two terms cancel since 

d2k, d2k2 d2k3 
S (k, + k, + k,) cl 6, &8’, + 8; - 6: - 28, 63), 

(3.18) 

which is precisely H ,  in (2.13). Thus we secure for the Hamiltonian of the new 
canonical variables 

(3.19) 

where ... includes higher than third-order terms. If we truncate K(A = 1) at second 
order we then have linear equations of motion in the new variables. In  any problem, 
the initial conditions (in time) are specified in terms of the physical variables, so that 
(3.7), integrated from h = 0 to h = 1 gives the new variables to be used in (3.19). The 
time evolution is determined by the quadratic terms in (3.19) and is particularly 
simple. If one is interested in evolving the wave field to a particular time (i.e. not 
interested in the intervening behaviour) then this approach is useful because the hard 
work is done at the initial and final times in transforming between the physical and 
linear variables. 

4. One-dimensional results 
We have emphasized that canonical transformations are useful when dealing with 

a fully evolving (in time) wave field. In  order to illustrate the method and to show 
the quality of the new representation, we discuss some one-dimensional examples. 
First consider a time-independent (in the appropriate reference frame) wave, e.g. a 
Stokes wave. Assume that the wave field is described by a Hamiltonian in (3.19), 
which is only quadratic in the new, linear variables. To describe a Stokes wave, 
prescribe these new variables to have only one wavenumber component. Then (3.7) 
integrated from h = 1 to h = 0 will give the physical variables describing the 
waveform. I n  one dimension the functions B and D are particularly simple ; D is zero 
and B is 

B( 1,2,3)  = - lk,l if ,  f2, 
where, in one dimension, f denotes sgn (k). Because of the nature of the B and D 
coefficients the Lie-transfdrrn equation can be simply written using the Hilbert 
transform of 2 

and similarly for @. Here PJ is the principal value integral. In Fourier-transformed 
variables, for example, we have 

B,(h) = dze-i”zfi(s, A)  = - ik3Jh). (4.3 1 J 
In the linear approximation z represents the horizontal displacement of the fluid 
elements in the wave (i.e. the Hilbert transform turns a cosine function into a sine 
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function). In the general case, it is still useful to think of 2 as being approximately 
the horizontal displacement. One feature of the Hilbert transform is that the 
magnitude of the complex funct' 3 ion 

f(x) = ~ ( x ,  A )  + iZ(x, A )  (4.4) 

represents the envelope of a wave packet at a given A. For example, if Z(x) is a 
product of an oscillating wave and a more slowly varying function 

then 

Z ( x )  = g(x) cos (k.), 

f(x) = g(x) eircz, 

whose magnitude is just the slowly varying function g. I n  terms of g(x ,h )  and 
6(x ,  A )  and using (4.1), (3.12) becomes (in real space) 

and 

a -  i a -  
ah --z(x, h = ----zZ(x, 2 ax h) ;  

- 6 ( x , h )  a = -Z(x,h)-@(x,h). a -  
ah ax 

(4.7u) 

(4.7b) 

According to Whitham (1974), (4.7) can be solved using the method of 
characteristics, yielding 

&x,h) = 2*(x), ( 4 . 8 ~ )  

and @ x , 4  = 3o(x ) ,  (4.8b) 

where x is a shifted horizontal coordinate determined by the equation 

x = x+h.&(x), (4.9a) 

or x = x + hZ(x, A) ,  (4.9b) 

Here the functions Z0(x) and G0(x) are the specified boundary conditions a t  A = 0. 
Specifying the boundary conditions a t  h = 1 would alter ( 4 . 9 ~ )  to 

x = X-(1-h)2o(X), (4.10) 

with go and 6o different given functions (at h = 1) .  Taking the inverse of (4.2) 
allows us to express the new, linear variables (i.e. h = 1 )  in terms of the physical 
variables as 

and 

where is determined by the implicit equation 
y = x + [ ( x ) .  By shifting the integration variable to x 

and 

( 4 . 9 ~ )  evaluated at  
these can be written 

(4.1 1 a )  

(4.11 b) 

A =  1,  

( 4 . 1 2 ~ )  

(4.12 b) 

Expressing the physical variables in terms of the linear variables of the truncated 
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in a similar fashion yields (using Hamiltonian (which we now express as 5, and 
(4.10) evaluated a t  h = 0) 

and 

( 4 . 1 3 ~ )  

(4.13b) 

In the remainder of this section, and the following two, we shall only be concerned 
with (4.13), i.e. given the new, linear variables what are the physical variables? 

The Fourier components of the physical variables are easily determined from the 
transforms of (4.13) as 

5 - ik dy (1 - 5;) e-WY-t~(Y)lt ( 
k -  0 Y L  

1 
= - I d y  e-ik[Y-&(~)l G ( Y )  

Ikl 

and 

(4.14a) 

(4.14b) 

The second forms of both these equations are obtained by noting that the (1 - c )  can 
be interpreted as the derivative of the exponential and then integrating by parts. The 
final form in ( 4 . 1 4 ~ )  comes from another integration by parts, noting that there 
should be no singular contribution at k = 0. As an aside note that any derivatives, 
such as spatial gradients, of the fields are easily expressed in terms of the 
corresponding derivatives of the linear variables ; multiplying (4.14) by ik and 
Fourier transforming back to x-space yields 

and 

( 4 . 1 5 ~ )  

(4.15b) 

Finally we note that the time evolution of the nonlinear, physical fields is easily 
incorporated into our formula by just letting the linear variables evolve according to 
their quadratic Hamiltonian. 

Our approximation to a Stokes wave is obtained by co(y) = asin (ky-wt) and 
q&o(y) = - (wa/k) cos (ky-wt). These are the waves of permanent form in a linear 
theory. The comparison of surface height for an exact Stokes wave and ( 4 . 1 3 ~ )  is 
shown in figure 1. In this figure the dashed line is a sinusoidal, linear wave of height 
0.2 m and wavelength 2 x  m. The small circles represent our transformed wave 
( 4 . 1 3 ~ )  while the solid line is a Stokes wave which was calculated using the expansion 
given by Schwarz (1974). It can be seen that the Lie transform presents a very good 
approximation to the true Stokes waveform. In figure 2(a,  b)  we have similar plots 
for the orbital surface velocities. Figure 2(a) compares the linear (dashed), Lie 
transformed (dotted), and Stokes (solid) horizontal velocity. The Lie-transformed 
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-0.2 ' ' I I I I I 

-3  -2 - 1  0 1 2 3 
Phase 

FIQURE 1. Comparison of linear (dash), Lie-transformed (circles), and Stokes (solid) waves for a 
wave slope, k,A, of 0.2. The fundamental wavenumber, k,, was chosen to  be unity so that in these 
units the wave height, A ,  is 0.2. 

horizontal velocity, u, is determined from u E D, q5. This expression can be evaluated 
using the equations of motion derived from (2.9) 

c = [D, - (a, 5) D,I d (4.16) 

and the identity (2.7), yielding 
[ $ S f 4  - 614 a 

1 + (0' 
U =  , (4.17) 

t is given by taking the time derivative of (4.13a), which after some integration by 
parts becomes 

(4.18) 

Figure 2 ( b )  does the same for the vertical velocity, v = D, q5, which again using (4.16) 
and (2.7) becomes 

(4.19) 

It should also be noted that in (4.10) evaluated at h = 0, the difference between x and 
x can be interpreted as the horizontal Lagrangian displacement. Since this difference 
is the Hilbert transform of the vertical height, this shows that the orbital motion of 
fluid particles is purely circular. For steady, progressive waves this interpretation is 
consistent with the analysis of Longuet-Higgins (1986). He showed that the 
Lagrangian displacement follows the motion of a cycloid. The horizontal dis- 
placement consists of a piece equivalent to  our displacement (to leading order) and 
another piece which grows secularly in time, being due to  the Stokes drift. Our 
transformation, being time independent, cannot contain such secular growth. 
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-3  -2  - 1  0 1 2 3 

Phase 

FIQURE 2. Comparison of ( a )  horizontal and ( b )  vertical surface velocities for linear (dash), Lie- 
transformed (circles), and Stokes (solid) waves, for the same parameters as figure 1. 

The Lie transformation introduced in the preceding section has implicit higher- 
order interactions included in it. One may question whether these interactions 
preserve locality. By this, we mean that a localized (in space) wave packet should not 
be transformed to a wave packet with non-local pieces to  it (i.e. significant pieces 
outside the packet). I n  figure 3 we compare a Gaussian wave packet (solid line) to its 
Lie transform (dotted line) when the total wave slope is approximately one-fourth. 
If anything, it can be seen that the transformed packet is narrower than the original 
packet, and so the Lie transform indeed preserves locality. 

Since our transformation induces nonlinearities into a linear wave field one can 
look at the nature of breaking waves in our theory. One cannot expect to have 
precisely the same wave breaking conditions as for a Stokes wave since these 
conditions depend on the form of high-order nonlinearities. While our model 
incorporates the correct leading order nonlinearity and approximates low-order 
nonlinearities well, there is no reason to suppose that high-order terms are even 
approximately correct. I n  the method of characteristics (cf. (4.8)) wave breaking (or, 
equivalently, multiple valuedness of the wave height) occurs when the relation 
between the horizontal coordinate and the shifted coordinate x becomes in- 
determinate (see Whitham 1974 for a discussion of this point). Setting h = 0 and 
differentiating (4.10) with respect to x yields 

(4.20) 

Breaking occurs when the term in the brackets vanishes. For a single-component 
wave, e.g. Z,(x) = acos Ex we obtain the condition 

1 = Ea cos kx. (4.21) 



148 D. B. Creamer, F. Henyey, R. Schult and J .  Wright 

1.2 

1 .o 

2 0.8 
OD .- 
2 
4- 4 0.6 

; 
m 
5 
x 0.4 

p: 
- 

0.2 

C 

- 10 - 5  0 5 10 

Position/width 

FIGURE 3. Effects of the Lie transform (dots) on a Gaussian wave packet (solid). 

This shows that breaking occurs when the wave slope (ha) equals one, as compared 
to a true Stokes wave where the wave breaking occurs when the wave slope is about 
0.41. 

One important feature of nonlinear surface gravity waves is the appearance of the 
Stokes-drift current and an attendant return current. This situation has been 
analysed by Longuet-Higgins & Stewart (1964) who note that the Stokes drift and 
the return current combine to ensure that there is no change in the surface elevation 
(i.e. a k x 0 contribution to the surface wave field), as would be caused by mass 
transport. One feature of the new representation is that, to  lowest order, the return 
current does balance the Stokes drift and that there is no change of in-surface 
elevation. This follows from (4.14). Consider a narrow-bandwidth group of waves, 
such that the nonlinear interactions generate wave components with nearly zero 
wavenumber. We expand the velocity potential, 9, in a Fourier series 

(4.22) 

The narrow band of waves is centred about some k, with important wave vectors in 
a band Ak about k,, so that the nonlinear interactions generate Fourier components 
in the range -Ak  5 k 5 Ak. It is apparent from (4.22) that the narrow-band 
component extends to a depth of l/k,, whereas the small-k terms extend to a depth 
of l / A k .  We shall show that the currents due to these two terms are equal in 
magnitude, but opposite in sign. 

In  order to obtain the Fourier components of 9 and g in the Ak-band, we expand 
(4.14) for small k 

dye-ikQ&(y) &(y) (4.23) 
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#sk = ik dye-ikyco(y) &,(y). (4.24) and 

We observe from (4.3) that the integral of a product of two Hilbert transforms is 
equal to the integral of the product of the original functions, so that for small k and 
k, % k the above equations become 

J 

and (4.26) 

The total horizontal current through the vertical plane located a t  some x is given 

(4.27) 

For a sufficiently narrow band of waves, there are two contributions to V(x). The 
near-surface contribution is readily evaluated from (4.27) to be [(x) @$,/ax), which 
when averaged over a wavelength h = 2n/k0 gives the familiar Stokes current 

(4.28) 

where ( ) denotes a spatial average over a wavelength, A ,  about x. To evaluate the 
deep current we insert (4.22) into (4.27) and keep only leading terms in the 
bandwidth 

VDeep(x) = 1’ d z r k  ~ i l e i k z e l k I 2  $k 
-m -AkZn 

~ ~ ~ e l k z # k ~  dkik . 
(4.29) 

where the integral is only over k-values such that k < k,. Inserting the expression for 
#, (4.26), we obtain 

VDeep(x) = i / G k e  dk A ikz  [if Sdye-ik”~,(y) # L ( ~ ) I  

= - (C,(x) #;O(x))? (4.30) 

which is minus the near-surface Stokes current (4.28). Thus the deep return current, 
which arises from nonlinear interactions, correctly cancels the surface Stokes drift. 

Finally, we see from (4.25) that the small-k Fourier components of Ck are 
proportional to k and hence there is no average (i.e. constant) surface elevation. This 
is in accordance with the analysis of Longuet-Higgins & Stewart (1964). 

5. Short waves on long waves 
Next we consider the effects that the Lie transform has on the situation of a narrow 

wave packet riding on a larger, longer wave. With the assumption of good scale 
separation we write 

(5.1) 6 ( 4  = L A X )  + C d 4 ,  
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and a similar expansion for &x). Here cL contains only long-wavelength components 
while Q contains only short-wavelength components. It is assumed that CL is given 
in terms of coL by (4.13). The expansions can be inserted into ( 4 . 1 4 ~ )  which, upon 
keeping only linear terms is cs and cos, becomes (in wavenumber space) 

Because of the scale separation we can expand CoL(x) about the centre of the wave 
packet, which we take to be (yo), 

COL(Y) = Codyo) + (Y - Yo) &L + . . * I (5.3) 

where we have discarded wave curvature and higher-order terms. Performing the 
y-integration yields 

COdP) Cs(k) = e-iWYo-SoL(Yo) dy e-ik(Y-Yo) (1-&(Y0) dp(i@) ,$P(Y-Yo) 

(5.4) 

" I  s 
= cos [ k ( l -  gL(yO))] e-ik[~o-~o~(~o)l. 

Fourier transforming back to coordinate space we secure for the physical wave height 

where [os(x) is the wave function describing the input packet. We immediately note 
the following points : 

(i) The centre of the wave packet is shifted by an amount [oL(yO)r i.e. by the 
Hilbert transform of the height of the linear, long wave. As an example consider a big 
wave of the form 

Then the Hilbert transform is 

cOL(Y0) = acoskyo. (5.6) 

(5.7) COL(Y0) = a sin kY0. 

In  the linear approximation coL is the vertical displacement while coL is the horizontal 
displacement. Thus the shift in (5.5) is precisely the correct shift as given by the long- 
wave advection. We see that there is no shift of the wave packet a t  the crest 
(yo = 0) or trough (yo = n / k )  of the big wave. There is a maximal shift on the sides 
(yo = + x / 2 k )  of the big wave. 

(ii) There is a shift in the short-wave wavenumber due to the term 1 -gL in the 
argument of Cs. Since gL is the long-wave straining, this is the correct wavenumber 
shift. 

(iii) There is a modulation of the width of the packet (and a corresponding 
change in the height so that the area under the packet remains constant), which is just 
1 - ka cos ky, for the wave considered in (i). Thus the packet becomes narrower and 
higher a t  the crest and the opposite a t  the trough. 

(iv) The form of the wave action is preserved. Of course, the actual value of the 
action remains constant under any canonical transformation. For short waves on long 
waves the action is given by an expression similar to that for linear waves wit,h the 
gravitational constant modified (Garrett & Smith 1976; Henyey et al. 1988) 
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FIGURE 4. Gurface-height field of the long wave (dash) with unit fundamental wavenumber (k,) 
and the wave packet (solid) which sits on the long wave. 

where the modified gravity is 
9’ = 9(1 -GJ, (5.9) 

to the leading order in the long-wave wave slope. Inserting (5.5) into (5.8) gives 

(5.10) 

showing that the value of the action is preserved as well as its form. Preservation of 
the value of the action by a canonical transformation such as (3.1) requires a 
modification of the form of the action, (5.8). 

As a specific example consider the linear (i.e. new variable) long wave to have 
wavelength 27c m (i.e. the wavenumber, k = 1 )  and the short wave initially to be a 
Gaussian packet of the form (in wavenumber space) 

(5.11) 

where W denotes the bandwidth, A is the small-wave height, and k, is the central 
wavenumber. For definiteness, we take A = m, k, = 72 m-l and W = 48 m-l. 
This large value of the central wavenumber assures good scale separation while the 
large bandwidth implies that we can investigate the nature of the interaction 
between long and short waves as a function of the phase of the long wave. We took 
the long-wave height to be 0.2 m implying a wave slope of 0.2. Thus, although 
interactions of the long wave with itself are important in building up the nonlinear 
(i.e. Stokes) wave, we want to focus on the strong interactions between waves with 
widely separated scales. Figure 4 shows the initial wave height (co,,+cos) and the 
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centre of the wave packet expressed in terms of the long-wave phase (yo = 0 is the crest of the long 
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form of the Gaussian packet [(;os(z)] for the situation where the packet sits at the 
crest of the long wave (of the form (5.6)). The total wave height was taken as the 
initial condition for (4.13a) and the transformed result had the physical CL 
subtracted from it. Figure 5 shows the envelope function squared, lf(z)I2, for the 
initial (COs) and Lie-transformed result ((;-cL), a t  four different values for the phase 
of the long wave, respectively, yo = 0, in, R, %R (yo = 0 is the crest of the long wave 
and the wave number, k, is one). It is seen that there is no shift of the wave packet 
a t  the crest (yo = 0) or the trough (yo = 7c) while the shift a t  the phase points 
yo = +R and yo = $R is seen to be given by our formula (5 .5) .  Thus our scale- 
separated result, (5 .5) ,  well approximates the full canonical transformation. 

In  this situation the Lie-transformed field is seen to provide better results than 
some other canonical transformations such as those generated by the global 
generating function (3.1). As can be seen from figure 5 the Lie-transformed fields give 
the correct dynamics for a wave packet on a long wave. This is because the dispersion 
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relation for the non-physical, linear variables & is unaltered, implying that the 
wave speed is unchanged. However, it is known that a physical wave packet will 
speed up or slow down (relative to this constant wave speed) according to the 
corresponding phase of the long wave a t  that point. The evolution of our Lie- 
transformed wave packet has just this behaviour, but it appears as a purely 
kinematic effect. Global canonical transformation does not give this kinematic 
behaviour, though the shift of the centre would be approximately correct in the 
circumstance when the actual shift (which is proportional to the long-wave height) 
is much less than the width of the packet (which is roughly the short-wave 
wavenumber). However, when the combination of the shift and width, k s f o L  is 
comparable with one, the coherence of the wave packet is destroyed. Our Lie 
transform seems to properly treat the important interactions (at least in one 
dimension) between short and long waves to all orders in kstoL. 

6. Surface-height spectrum 
As discussed in the introduction, since the new variables have linear dynamics it 

is possible that they have Gaussian statistics. Assuming this behaviour, we now 
investigate what this implies about the spectrum and statistics of the physical 
surface height. We shall look a t  one-dimensional spectra only. 

The surface-wave spectrum is defined as 

@(k) = dxeikz(c(ix)c( -ix)), J 
where ( ) denotes ensemble average. The homogeneity assumed in (6.1) also follows 
from 

(Ck C p )  2ns(k+p) @(k). (6.2) 

This form is more convenient since we can immediately use (4.14) in (6.2) 

The fo in (6.3) are assumed to be Gaussian random processes, allowing US to use 

1 2 -2 <ei&) = e-5~ <C > 

valid for Gaussian variables. Thus 

1. 
(6.5) 

1 
d e-i(kU,fPV2){ 1 + et<[k&(ai)+P~o(Yz)le) - e-$*(chi)) - edP2(~(Vz)) 

( c k 6 p )  = mJd 1 Y Z  

Because of homogeneity ([o(z)to(y)) is a function of x-y only, allowing us to 
explicitly perform one of the integrations. Thus, from (6.2), we find 

(6.6) 
@(k) = -i dy ,-ikv{ 1 + e - ~ k 2 < [ ~ o ( ~ ~ ) - ~ o ( - t y ) 1 2 )  - ze-$ 1 2 <50(0)>}. -2 

k 's 
Defining the correlation function as the Fourier transform of the spectrum of linear 
variableus, (6.1), 
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we find the correlation function of the Hilbert-transformed variables is the same as 
for the surface height (by using (4.3)) 

d & Y ) t o ( - ~ ) )  = C,(Y). (6.8) 

Using this in (6.6) the spectrum is 

Noting that there is no contribution a t  k = 0 (as there should not, be if Qi, has no 
contribution a t  k = 0) we can rewrite (6.9) to secure 

(6.10) 

In  order to  interpret this result we perform an expansion of the exponentials in the 
integrand in powers of the quantity k2C, and write the result as a convolution in 
wavenumber space 

@ ( k )  = @,(k)  +2k'Jdq{@,(q) @ , ( k - q ) - 2 @ , ( k )  @ & ) I .  (6.11) 

Notice that our result differs from Barrick & Weber (1976) who obtain a correction 
which is just the first term in the braces of (6.11). Our result (6.11) includes third- 
order waves (using their language), but as pointed out above these must be included 
for consistency and are extremely important. For large values of the spectral 
parameter k the first term has two regions of the q-integral which contribute, small 
q and small k-q. Both of these regions give a leading-order contribution of the form 
@,,(k)@,,(q) and the sum cancels the second term in the integral. If we had used a 
canonical transformation such as (3.1), this cancellation would not have been as 
complete. That is, some other canonical transformations would have given results 
where the correction grows as k2. For a power-law spectrum, the residual correction 
(for the Lie-transformed field) in the inertial rage is the mean square wave slope times 
the zeroth-order spectrum. 

Comparison of the modified spectrum is done in figure 6 for a Phillips (1977) 

(6.12) 

in the inertial range. We have included a roll-off of the spectrum at wavenumbers 
below about 0.1 m-l and above 50 m-l. The small circles represent the unperturbed 
(6.12), while the solid line represents @(k) of (6.10). For comparative purposes, we 
show the Barrick & Weber correction term as a dashed line. Note that for large 
spatial wavenumbers their correction is much larger than the original spectrum and 
orders of magnitude larger than the consistent correction of (6.1 I ) ,  in line with the 
above observations on the incomplete cancellation. The dimensionless quantity 
defining the perturbation in the Barrick & Weber expansion is the short-wave 
wavenumber (i.e. k) times the largest-wave height (predominantly from the spectral 
peak). This quantity is not small as k gets large. 
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In  order to see explicitly where the difference between Barrick & Weber's and our 
results comes from, we perform a perturbative expansion of the surface elevation 

Ck = - dy&y) [l+ikto(y)-+k2&y)+ ...]e-iky 
Ikl 'I 

The Barrick & Weber result comes from keeping just the first two terms in (6.13) and 
inserting the answer into the expression for the spectrum (6.2). However, we see that 
the third term times the first term, which appears as a cross-term in (6.2), is the same 
order in wave height as the second term squared. Keeping all terms to the same 
order, as can be done in the Lie transformation, we obtain (6.11) where, as we have 
noted before, the dimensionless perturbation parameter appears to be the mean- 
square wave slope. For the large-k portion of the wave spectrum the dominant 
interactions are the advection and straining by the large-scale waves (small k) and, 
as we have discussed in $ 5 ,  our result, (5.5),  consistently includes these interactions; 
the phase shift and wavenumber shift of the high-k modes are correctly given. 
Conservation of action is automatically included in our result, ensuring that any 
modification to the spectrum is small. Other formalisms (such as the global canonical 
transformation or na'ive perturbation theory) modify the form of the action and so 
can lead to large corrections to the spectrum unless done carefully. A consistent 

6 FLM 205 
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expansion should conserve wave action and thus should be an expansion in a small 
parameter (such as the wave slope). 

In  the light of recent experimental and theoretical investigations (Toba 1973 ; 
Kitaigorodski 1983; Phillips 1985) of the spatial spectrum we show, in figure 7, 
comparisons for a collinear spectrum of the form 

(6.14) 

in the inertial range and with roll-offs similar to those for (6.12). The small circles 
represent the unperturbed (6.14), while the solid line represent @(k) of (6.11) for this 
case. Again the modification of the spectrum occurs mainly as an increase in spectral 
strength a t  large wavenumbers. 

We also consider the surface-height bispectrum, A ,  

( 5 k , 5 k , 5 k a )  = ~ ( k l + ~ , + k 3 f ~ f k , , ~ , , k 3 ) .  (6.15) 

For Gaussian variables this quantity is zero. Using (4.14a), the averages in (6.15) are 
straightforwardly evaluated in terms of C, or the associated spectrum, Q0. 

Performing an expansion in k2Co similar to that for (6.11) we secure 

k 2 ,  k3) = '3($1 '3) ('2 $3) @O('l) @(I(',) 

+ k z ( k  L z )  ($3 @ o ( h )  @O(k3) + k ( ~ Z i  '1) ($3 $1) @O(k2) @ d k 3 ) .  (6.16) 

7. Two-dimensional results 
In  order to demonstrate the effect that our Lie transformation has on waves in two 

dimensions we show some numerical results for the surface height. In figure 8 (a )  we 
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FIQURE 8. (a) Contour plot of two-dimensional surface elevation for the sum of two cosine waves, 
with contours representing the wave slope, k x wave height, in intervals of 0.02. The two wave 
vectors are (klz,kly) x (0.924, 0.3827) and ( k z z , k Z y )  x (0.924, -0.3827). Both wave vectors are of 
unit magnitude. (b) Contour plot of two-dimensional surface elevation for the Lie transform of the 
sum of the waves in (a). Again, the contours are in intervals of 0.02. 

present a contour plot of the surface-height field for the linear variables. This surface- 
height field consists of the sum of two cosine waves. The first wave has a wave vector 
k,, x 0.924 m-l and k,, x 0.3827 m-l. The second wave has a wave vector k,, x 
0.924 rn-' and k,, x -0.3827 m-l. The crest of the sum of the waves occurs at the 
origin. I n  figure 8 (a) we show the results of inserting this initial height field (and the 
corresponding velocity potential) into (3.12) and integrating from h = 1 to h = 0 to 
obtain the physical surface elevation. The contours in the two figures represent the 
same values and so we take note of the peaking of the crest a t  the origin and the 
flattening of the surrounding troughs. 

Since, in the new variables, the dynamics is linear, a wave packet will propagate 
in a straight line. Furthermore, since the nonlinear representation maintains the 
locality, but slightly shifts the position and alters the shape of the packet, the 
physical wave packet will also propagate approximately in a straight line. In  
particular, we conclude that a short wave that is being moved around by long waves 
will, on the average, move with constant velocity and will have constant wavenumber 
(with the proviso that there are no four-wave resonances present). We tested this 
conclusion with a ray-tracing calculation. Consider three big waves with wave- 
numbers k, (0.05, 0) rad/m, k, = (0.04,0.05) rad/m, and k, = (0,0.045) rad/m, each 

6-2 
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with a 1 m amplitude. (Three waves are the minimum needed in two dimensions to 
prevent the existence of a frame in which the flow is steady.) The ray equations, 
including intrinsic motion with effective gravity and with advection and straining by 
the big waves, were integrated for a small wave with initial conditions of q = (20, 0) 
rad/m, for a time of 2000 s, which is comparable with the viscous dissipation time of 
these waves. 

In  order to compare to these ray-tracing results we generalize the effects of long 
waves on short waves that we discovered in one dimension. In  order to do this we 
must first generalize the notion of the Hilbert transform of a function which was 
introduced in $4. This is accomplished by an inspection of (4.3). We consider the 
transform of a function f ( x ) ,  which is defined in the Fourier-transformed wave-vector 
space, f ( k )  5 Sdxeik'"f(z), as 

F(k)  E -i&f(k), (7.1) 

where k is a unit vector in the k-direction and is similar to (4.3). Our two-dimensional 
generalization consists of asserting that the horizontal Lagrangian displacement, 
which in one dimension is the Hilbert transform of the large-wave height, is given by 
the transform (7.1) acting on the large wave 

S(x) = - C hi ki sin ( k i . x  - wi t + q5J. 
i 

where hi, k i ,  wi ,  and 
frequency, and initial phase for each of the large-wave modes. 

(cf. the discussion following (5.5)) to two dimensions 

respectively represent the wave height, wavenumber, 

Our interpretation of the one-dimensional result (5.5) or (5.4) can now be extended 

1. The centre of the packet is shifted by an amount S(x,)  given by (7.2). 
2. There is a stretching and a rotation of the short-wave wavenumber given in 

component form by 

q; = [6ij-v,s.] 3 45 (7.3) 

with an implied sum over the component index j. 
3. There is a modulation of the width of the packet which is related to the 

transformation matrix in (7.3) and a corresponding change of its height given by the 
Jacobian of that transformation. 

For comparison to the ray-tracing calculation we then expect that the packet's 
wavenumber consists of a time-independent piece (i.e. conserved) and a variation of 
the form 

84 = C hi ki ki .4  cos ( k i - x -  t + $ i ) ,  (7.4) 
I 

which is just the gradient of (7.2).  The sum is over the long-wave components. Figure 
9 ( a )  shows the two components of the deviation 

A q  = qray-[Sq+q(t = 0)-6q(t = O)]. (7.5) 

On the average it is seen that Aqz is almost zero, while there appears to be an average 
shift in Aqy. 

The expectation for the position of the wave packet involves two effects, the 
horizontal Lagrangian displacement in (7.2) and a secular piece (not given by the 
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linear theory) due to the difference between Lagrangian and Eulerian systems. The 
latter effect comes from the packet's group velocity 

V, = $g(g/q)? = (0.3636, -0.0123)m/s. 

VStoke. = y a 2 w  = (0.0333,0.0347) m/S, (7.7) 

(7.6) 

and the part of the Stokes-drift velocity that remains for linear, large waves (which 
is half the total) 

being about 10% of Vk. Adding this drift velocity to the group velocity, we predict 
that the secular term grows at the rate 

VTotal = (0.3969,0.0224) m/s. (7.8) 

(7.9) 

In  figure 9(b), we plot 

AX = X , , ~ - [ S - ~ V ~ , , ~ ~ ~ - X ( ~  = 0 ) - S ( t  = O ) ] .  

Aside from the oscillating part and a 5 m part that would not occur if we have used 
the average linear qy, there are only x 1 m deviations, out of the approximately 
800 m travelled by the wave. The improved linear representation by itself would be 
wrong by ( VStokes) x 2000 s, or about 100 m. Although this is about 10% of the total 
distance, the important conclusion is that the motion of the small wave is 
predictable, and that there is no chaotic wandering of the wavenumber or position. 
We have verified that our representation in two dimensions extends the small-wave 
results presented in one dimension, and that the small-wave advection and straining 
by the large wave are correctly given. We have also included more long waves in the 
comparison and obtained similar results. 

Finally, we include the form of the height bispectrum takes in our two-dimensional 
generalization, 

k 2 ,  k 3 )  = k!3(R1'R3) ('2*'3) @ O ( k l )  @ 0 ( k 2 )  

+k2('1*'2) ('3.'2) @ O ( k I )  @ O ( k 3 )  +Icl('2''1) ('3''l) @CJ(k2) @ O ( k 3 ) ,  

where ki are unit vectors in the appropriate direction. 
(7.10) 
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